Nuprl Lemma : rel_plus_implies
11,40
postcript
pdf
T
:Type,
R
:(
T
T
),
x
,
y
:
T
. (
x
R
^+
y
)
((
x
R
y
)
(
z
:
T
. ((
x
R
^+
z
) & (
z
R
y
))))
latex
Definitions
x
:
A
.
B
(
x
)
,
,
P
Q
,
x
f
y
,
t
T
,
,
A
B
,
A
,
False
,
SQType(
T
)
,
{
T
}
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
&
Q
,
rel_exp(
T
;
R
;
n
)
,
Y
,
if
b
then
t
else
f
fi
,
tt
,
ff
,
R
^+
,
,
(
i
=
j
)
,
A
c
B
,
Dec(
P
)
,
,
Unit
,
P
Q
,
,
S
T
Lemmas
nat
plus
properties
,
rel
exp
wf
,
le
wf
,
decidable
int
equal
,
rel
plus
wf
,
eq
int
wf
,
bool
wf
,
iff
transitivity
,
assert
wf
,
eqtt
to
assert
,
assert
of
eq
int
,
bnot
wf
,
not
wf
,
eqff
to
assert
,
assert
of
bnot
,
not
functionality
wrt
iff
,
nat
plus
inc
origin